LehrFEM++ 1.0.0
A simple Finite Element Library for teaching
|
A mesh function representing another mesh function under a pointwise, unary operation. More...
#include <lf/uscalfe/uscalfe.h>
Public Member Functions | |
MeshFunctionUnary (OP op, MF mf) | |
auto | operator() (const mesh::Entity &e, const Eigen::MatrixXd &local) const |
Private Attributes | |
OP | op_ |
MF | mf_ |
Related Symbols | |
(Note that these are not member symbols.) | |
template<MeshFunction A> | |
auto | operator- (const A &a) -> MeshFunctionUnary< internal::UnaryOpMinus, A > |
Applies the unary minus operator to a mesh function. | |
template<MeshFunction A> | |
auto | squaredNorm (const A &a) -> MeshFunctionUnary< internal::UnaryOpSquaredNorm, A > |
Pointwise squared norm of another mesh function. | |
template<MeshFunction A> | |
auto | transpose (const A &a) -> MeshFunctionUnary< internal::UnaryOpTranspose, A > |
Pointwise transpose of an Eigen::Matrix or Eigen::Array | |
template<MeshFunction A> | |
auto | adjoint (const A &a) -> MeshFunctionUnary< internal::UnaryOpAdjoint, A > |
Pointwise adjoint of an Eigen::Matrix , i.e. the conjugate transposed of the matrix. | |
template<MeshFunction A> | |
auto | conjugate (const A &a) -> MeshFunctionUnary< internal::UnaryOpConjugate, A > |
Pointwise conjuagte of an Eigen::Matrix , Eigen::Array or scalar valued mesh function. | |
A mesh function representing another mesh function under a pointwise, unary operation.
OP | The operator that should be applied (see below) |
MF | The type of the original mesh function. |
The Operator OP
must fulfill the following requirements:
operator()
as follows: U
is the MeshFunctionReturnType of the original MeshFunction, and Z
is the type of the mesh function OP MF
.Definition at line 39 of file mesh_function_unary.h.
|
inline |
Definition at line 41 of file mesh_function_unary.h.
|
inline |
Definition at line 43 of file mesh_function_unary.h.
References lf::mesh::utils::MeshFunctionUnary< OP, MF >::mf_, and lf::mesh::utils::MeshFunctionUnary< OP, MF >::op_.
|
related |
Pointwise adjoint of an Eigen::Matrix
, i.e. the conjugate transposed of the matrix.
A | The type of the original mesh function. |
a | The original mesh function whose adjoint should be taken. |
a
. Definition at line 308 of file mesh_function_unary.h.
|
related |
Pointwise conjuagte of an Eigen::Matrix
, Eigen::Array
or scalar valued mesh function.
A | The type of the original mesh function. |
a | The original mesh function that should be conjugated. |
a
. Definition at line 325 of file mesh_function_unary.h.
|
related |
Applies the unary minus operator to a mesh function.
A | The type of the original mesh function. |
a | The original mesh function. |
-a
, where the minus operator is applied pointwise everywhere on the mesh.a
must support the minus operator! Definition at line 263 of file mesh_function_unary.h.
|
related |
Pointwise squared norm of another mesh function.
A | The type of the wrapped mesh function. |
a | The original mesh function |
|a|^2
(pointwise)a
to be either scalar or (eigen-) vector valued. Definition at line 278 of file mesh_function_unary.h.
|
related |
Pointwise transpose of an Eigen::Matrix
or Eigen::Array
A | The type of the wrapped mesh function. |
a | The original MeshFunction |
a
. Definition at line 291 of file mesh_function_unary.h.
|
private |
Definition at line 49 of file mesh_function_unary.h.
Referenced by lf::mesh::utils::MeshFunctionUnary< OP, MF >::operator()().
|
private |
Definition at line 48 of file mesh_function_unary.h.
Referenced by lf::mesh::utils::MeshFunctionUnary< OP, MF >::operator()().