LehrFEM++ 1.0.0
A simple Finite Element Library for teaching
Loading...
Searching...
No Matches
Public Member Functions | Private Attributes | List of all members
lf::geometry::Point Class Reference

#include <lf/geometry/point.h>

Inheritance diagram for lf::geometry::Point:
lf::geometry::Geometry

Public Member Functions

 Point (Eigen::VectorXd coord)
 
dim_t DimLocal () const override
 Dimension of the domain of this mapping.
 
dim_t DimGlobal () const override
 Dimension of the image of this mapping.
 
base::RefEl RefEl () const override
 The Reference element that defines the domain of this mapping.
 
Eigen::MatrixXd Global (const Eigen::MatrixXd &local) const override
 Map a number of points in local coordinates into the global coordinate system.
 
Eigen::MatrixXd Jacobian (const Eigen::MatrixXd &local) const override
 Evaluate the jacobian of the mapping simultaneously at numPoints points.
 
Eigen::MatrixXd JacobianInverseGramian (const Eigen::MatrixXd &local) const override
 Evaluate the Jacobian * Inverse Gramian ( \( J (J^T J)^{-1}\)) simultaneously at numPoints.
 
Eigen::VectorXd IntegrationElement (const Eigen::MatrixXd &local) const override
 The integration element (factor appearing in integral transformation formula, see below) at number of evaluation points (specified in local coordinates).
 
std::unique_ptr< GeometrySubGeometry (dim_t codim, dim_t i) const override
 Construct a new Geometry() object that describes the geometry of the i-th sub-entity with codimension=codim
 
std::vector< std::unique_ptr< Geometry > > ChildGeometry (const RefinementPattern &ref_pattern, base::dim_t codim) const override
 the child geometry is just a copy of the point geometry
 
- Public Member Functions inherited from lf::geometry::Geometry
virtual bool isAffine () const
 element shape by affine mapping from reference element
 
virtual ~Geometry ()=default
 Virtual destructor.
 

Private Attributes

Eigen::VectorXd coord_
 

Additional Inherited Members

- Public Types inherited from lf::geometry::Geometry
using dim_t = base::RefEl::dim_t
 
- Protected Member Functions inherited from lf::geometry::Geometry
 Geometry ()=default
 
 Geometry (const Geometry &)=default
 
 Geometry (Geometry &&)=default
 
Geometryoperator= (const Geometry &)=default
 
Geometryoperator= (Geometry &&)=default
 

Detailed Description

Definition at line 10 of file point.h.

Constructor & Destructor Documentation

◆ Point()

lf::geometry::Point::Point ( Eigen::VectorXd coord)
inlineexplicit

Definition at line 12 of file point.h.

Member Function Documentation

◆ ChildGeometry()

std::vector< std::unique_ptr< Geometry > > lf::geometry::Point::ChildGeometry ( const RefinementPattern & ref_pattern,
base::dim_t codim ) const
overridevirtual

the child geometry is just a copy of the point geometry

Implements lf::geometry::Geometry.

Definition at line 30 of file point.cc.

References coord_, lf::base::RefEl::kPoint(), lf::geometry::RefinementPattern::NumChildren(), lf::geometry::RefinementPattern::RefEl(), and lf::base::RefEl::ToString().

◆ DimGlobal()

dim_t lf::geometry::Point::DimGlobal ( ) const
inlineoverridevirtual

Dimension of the image of this mapping.

Implements lf::geometry::Geometry.

Definition at line 16 of file point.h.

References coord_.

Referenced by Jacobian().

◆ DimLocal()

dim_t lf::geometry::Point::DimLocal ( ) const
inlineoverridevirtual

Dimension of the domain of this mapping.

Implements lf::geometry::Geometry.

Definition at line 14 of file point.h.

◆ Global()

Eigen::MatrixXd lf::geometry::Point::Global ( const Eigen::MatrixXd & local) const
overridevirtual

Map a number of points in local coordinates into the global coordinate system.

Parameters
localA Matrix of size DimLocal() x numPoints that contains in its columns the coordinates of the points at which the mapping function should be evaluated.
Returns
A Matrix of size DimGlobal() x numPoints that contains the mapped points as column vectors. Here numPoints is the number of columns of the matrix passed in the local argument.

\[ \mathtt{Global}\left(\left[\widehat{x}^1,\ldots,\widehat{x}^k\right]\right) = \left[ \mathbf{\Phi}_K(\widehat{x}^1),\ldots,\mathbf{\Phi}_K(\widehat{x}^k)\right]\;,\quad \widehat{x}^{\ell}\in\widehat{K}\;, \]

where \(\mathbf{\Phi}\) is the mapping taking the reference element to the current element \(K\).

This method provides a complete description of the shape of an entity through a parameterization over the corresponding reference element = parameter domain. The method takes as arguments a number of coordinate vectors of points in the reference element. For the sake of efficiency, these coordinate vectors are passed as the columns of a dynamic matrix type as supplied by Eigen.

For instance, this method is used in lf::geometry::Corners()

inline Eigen::MatrixXd Corners(const Geometry& geo) {
return geo.Global(geo.RefEl().NodeCoords()); }
const Eigen::MatrixXd & NodeCoords() const
Get the coordinates of the nodes of this reference element.
Definition ref_el.h:241
Interface class for shape information on a mesh cell in the spirit of parametric finite element metho...
virtual base::RefEl RefEl() const =0
The Reference element that defines the domain of this mapping.
virtual Eigen::MatrixXd Global(const Eigen::MatrixXd &local) const =0
Map a number of points in local coordinates into the global coordinate system.
Eigen::MatrixXd Corners(const Geometry &geo)
The corners of a shape with piecewise smooth boundary.

Additional explanations in Lecture Document Paragraph 2.7.5.17.

Implements lf::geometry::Geometry.

Definition at line 4 of file point.cc.

References coord_.

◆ IntegrationElement()

Eigen::VectorXd lf::geometry::Point::IntegrationElement ( const Eigen::MatrixXd & local) const
overridevirtual

The integration element (factor appearing in integral transformation formula, see below) at number of evaluation points (specified in local coordinates).

Parameters
localA Matrix of size DimLocal() x numPoints that contains the evaluation points (in local = reference coordinates) as column vectors.
Returns
A Vector of size numPoints x 1 that contains the integration elements at every evaluation point.

For a transformation \( \Phi : K \mapsto R^{\text{DimGlobal}}\) with Jacobian \( D\Phi : K \mapsto R^{\text{DimGlobal} \times \text{DimLocal}} \) the integration element \( g \) at point \( \xi \in K \) is defined by

\[ g(\xi) := \sqrt{\mathrm{det}\left|D\Phi^T(\xi) D\Phi(\xi) \right|} \]

More information also related to the use of lovcal quadrature rules is given in Lecture Document Paragraph 2.7.5.24.

Implements lf::geometry::Geometry.

Definition at line 19 of file point.cc.

◆ Jacobian()

Eigen::MatrixXd lf::geometry::Point::Jacobian ( const Eigen::MatrixXd & local) const
overridevirtual

Evaluate the jacobian of the mapping simultaneously at numPoints points.

Parameters
localA Matrix of size DimLocal x numPoints that contains the evaluation points as column vectors
Returns
A Matrix of size DimGlobal() x (DimLocal() * numPoints) that contains the jacobians at the evaluation points.

This method allows access to the derivative of the parametrization mapping in a number of points, passed as the columns of a dynamic matrix. The derivative of the parametrization in a point is a Jacobian matrix of size ‘DimGlobal() x DimLocal()’. For the sake of efficiency, these matrices are stacked horizontally and returned as one big dynamic matrix. Use Eigen's ‘block()’ method of Eigen::MatrixXd to extract the individual Jacobians from the returned matrix.

Implements lf::geometry::Geometry.

Definition at line 10 of file point.cc.

References DimGlobal().

◆ JacobianInverseGramian()

Eigen::MatrixXd lf::geometry::Point::JacobianInverseGramian ( const Eigen::MatrixXd & local) const
overridevirtual

Evaluate the Jacobian * Inverse Gramian ( \( J (J^T J)^{-1}\)) simultaneously at numPoints.

Parameters
localA Matrix of size DimLocal() x numPoints that contains the evaluation points as column vectors.
Returns
A Matrix of size DimGlobal() x (DimLocal() * numPoints) that contains the Jacobian multiplied with the Inverse Gramian ( \( J (J^T J)^{-1}\)) at every evaluation point.
Note
If DimLocal() == DimGlobal() then \( J (J^T J)^{-1} = J^{-T} \), i.e. this method returns the inverse of the transposed jacobian.

Example for recovering a single transposed inverse Jacobian.

If both dimensions agree and have the value D, then the method returns the transposed of the inverse Jacobians of the transformation at the passed points. These are square DxD matrices.

To retrieve the j-th inverse transposed Jacobian from the returned matrix, use the block methdod of Eigen (case (D = DimLocal()) == DimGlobal())

JacobianInverseGramian(local).block(0,i*D,D,D)
Eigen::MatrixXd JacobianInverseGramian(const Eigen::MatrixXd &local) const override
Evaluate the Jacobian * Inverse Gramian ( ) simultaneously at numPoints.
Definition point.cc:14

More explanations in Paragraph 2.8.3.14.

Implements lf::geometry::Geometry.

Definition at line 14 of file point.cc.

◆ RefEl()

base::RefEl lf::geometry::Point::RefEl ( ) const
inlineoverridevirtual

The Reference element that defines the domain of this mapping.

Implements lf::geometry::Geometry.

Definition at line 18 of file point.h.

References lf::base::RefEl::kPoint().

◆ SubGeometry()

std::unique_ptr< Geometry > lf::geometry::Point::SubGeometry ( dim_t codim,
dim_t i ) const
overridevirtual

Construct a new Geometry() object that describes the geometry of the i-th sub-entity with codimension=codim

Parameters
codimThe codimension of the sub-entity (w.r.t. DimLocal())
iThe zero-based index of the sub-entity.
Returns
A new Geometry object that describes the geometry of the specified sub-entity.

Let \( \mathbf{\Phi} : K \mapsto \mathbb{R}^\text{DimGlobal} \) be the mapping of this Geometry object and let \( \mathbf{\xi} : \mathbb{R}^{\text{DimLocal}-codim} \mapsto K\) be the first-order mapping that maps the reference element RefEl().SubType(codim,i) to the i-th sub-entity of RefEl(). I.e. for every node \( \mathbf{n_j} \) of RefEl().SubType(codim,i) it holds that \( \mathbf{\xi}(\mathbf{n_j}) = \) RefEl().NodeCoords(RefEl().SubSubEntity2SubEntity(codim, i, DimLocal()-codim, j)).

Then the geometry element returned by this method describes exactly the mapping \( \mathbf{\Phi} \circ \mathbf{\xi} \)

Implements lf::geometry::Geometry.

Definition at line 23 of file point.cc.

References coord_.

Member Data Documentation

◆ coord_

Eigen::VectorXd lf::geometry::Point::coord_
private

Definition at line 41 of file point.h.

Referenced by ChildGeometry(), DimGlobal(), Global(), and SubGeometry().


The documentation for this class was generated from the following files: