LehrFEM++ 1.0.0
A simple Finite Element Library for teaching
|
Wraps another ScalarReferenceFiniteElement and multiplies the shape functions with the imaginary unit to create complex valued shape functions. More...
#include <lf/fe/test_utils/complex_fe_space.h>
Public Member Functions | |
ComplexScalarReferenceFiniteElement (std::unique_ptr< lf::fe::ScalarReferenceFiniteElement< SCALAR > > fe) | |
base::RefEl | RefEl () const override |
Tells the type of reference cell underlying the parametric finite element. | |
unsigned | Degree () const override |
Request the maximal polynomial degree of the basis functions in this finite element. | |
size_type | NumRefShapeFunctions (dim_t codim, sub_idx_t subidx) const override |
The number of interior reference shape functions for every sub-entity. | |
Eigen::Matrix< std::complex< SCALAR >, Eigen::Dynamic, Eigen::Dynamic > | EvalReferenceShapeFunctions (const Eigen::MatrixXd &refcoords) const override |
Evaluation of all reference shape functions in a number of points. | |
Eigen::Matrix< std::complex< SCALAR >, Eigen::Dynamic, Eigen::Dynamic > | GradientsReferenceShapeFunctions (const Eigen::MatrixXd &refcoords) const override |
Computation of the gradients of all reference shape functions in a number of points. | |
Eigen::MatrixXd | EvaluationNodes () const override |
Returns reference coordinates of "evaluation nodes" for evaluation of parametric degrees of freedom, nodal interpolation in the simplest case. | |
size_type | NumEvaluationNodes () const override |
Tell the number of evaluation (interpolation) nodes. | |
Eigen::Matrix< std::complex< SCALAR >, 1, Eigen::Dynamic > | NodalValuesToDofs (const Eigen::Matrix< std::complex< SCALAR >, 1, Eigen::Dynamic > &nodvals) const override |
size_type | NumRefShapeFunctions (dim_t dim) const override |
The number of interior reference shape functions for sub-entities of a particular co-dimension. | |
![]() | |
virtual | ~ScalarReferenceFiniteElement ()=default |
dim_t | Dimension () const |
Returns the spatial dimension of the reference cell. | |
virtual size_type | NumRefShapeFunctions () const |
Total number of reference shape functions associated with the reference cell. | |
virtual Eigen::Matrix< SCALAR, 1, Eigen::Dynamic > | NodalValuesToDofs (const Eigen::Matrix< SCALAR, 1, Eigen::Dynamic > &nodvals) const |
Computes the linear combination of reference shape functions matching function values at evaluation nodes. | |
Private Attributes | |
std::unique_ptr< const lf::fe::ScalarReferenceFiniteElement< SCALAR > > | inner_ |
Wraps another ScalarReferenceFiniteElement and multiplies the shape functions with the imaginary unit to create complex valued shape functions.
SCALAR | Scalar type of the wrapped FiniteElement. |
Definition at line 23 of file complex_fe_space.h.
|
inline |
Definition at line 26 of file complex_fe_space.h.
|
inlineoverridevirtual |
Request the maximal polynomial degree of the basis functions in this finite element.
Implements lf::fe::ScalarReferenceFiniteElement< std::complex< SCALAR > >.
Definition at line 31 of file complex_fe_space.h.
References lf::fe::test_utils::ComplexScalarReferenceFiniteElement< SCALAR >::inner_.
|
inlineoverridevirtual |
Evaluation of all reference shape functions in a number of points.
refcoords | coordinates of N points in the reference cell passed as columns of a matrix of size dim x N, where dim is the dimension of the reference element, that is =0 for points, =1 for edges, =2 for triangles and quadrilaterals |
NumRefShapeFunctions() x refcoords.cols()
which contains the shape functions evaluated at every quadrature point.Concerning the numbering of local shape functions, please consult the documentation of lf::assemble::DofHandler or the documentation of the class.
There are three reference shape functions \(\hat{b}^1,\hat{b}^2,\hat{b}^3\) associated with the vertices of the reference triangle. Let us assume that the refcoords
argument is a 2x2 matrix \([\mathbf{x}_1\;\mathbf{x}_2]\), which corresponds to passing the coordinates of two points in the reference triangle. Then this method will return a 3x2
matrix:
\[ \begin{pmatrix}\hat{b}^1(\mathbf{x}_1) & \hat{b}^1(\mathbf{x}_2) \\ \hat{b}^2(\mathbf{x}_1) & \hat{b}^2(\mathbf{x}_2) \\ \hat{b}^3(\mathbf{x}_1)\ & \hat{b}^3(\mathbf{x}_2) \end{pmatrix} \]
Implements lf::fe::ScalarReferenceFiniteElement< std::complex< SCALAR > >.
Definition at line 38 of file complex_fe_space.h.
References lf::fe::test_utils::ComplexScalarReferenceFiniteElement< SCALAR >::inner_.
|
inlineoverridevirtual |
Returns reference coordinates of "evaluation nodes" for evaluation of parametric degrees of freedom, nodal interpolation in the simplest case.
Every parametric scalar finite element implicitly defines a local interpolation operator by duality with the reference shape functions. This interpolation operator can be realized through evaluations at certain evaluation nodes, which are provided by this method.
The evaluation points must satisfy the following requirement: If the values of a function belonging to the span of the reference shape functions are known in the evaluation nodes, then this function is uniquely determined. This entails that the number of evaluation nodes must be at least as big as the number of reference shape functions.
For triangular Lagrangian finite elements of degree p the evaluation nodes, usually called "interpolation nodes" in this context, can be chosen as \(\left(\frac{j}{p},\frac{k}{p}\right),\; 0\leq j,k \leq p, j+k\leq p\).
For some finite element spaces the interpolation functional may be defined based on integrals over edges. In this case the evaluation nodes will be quadrature nodes for the approximate evaluation of these integrals.
The quadrature rule must be exact for the polynomials contained in the local finite element spaces.
Implements lf::fe::ScalarReferenceFiniteElement< std::complex< SCALAR > >.
Definition at line 49 of file complex_fe_space.h.
References lf::fe::test_utils::ComplexScalarReferenceFiniteElement< SCALAR >::inner_.
|
inlineoverridevirtual |
Computation of the gradients of all reference shape functions in a number of points.
refcoords | coordinates of N points in the reference cell passed as columns of a matrix of size dim x N. |
NumRefShapeFunctions() x (dim * refcoords.cols())
where dim
is the dimension of the reference finite element. The gradients are returned in chunks of rows of this matrix.Concerning the numbering of local shape functions, please consult the documentation of lf::assemble::DofHandler.
There are three reference shape functions \(\hat{b}^1,\hat{b}^2,\hat{b}^3\) associated with the vertices of the reference triangle. Let us assume that the refcoords
argument is a 2x2 matrix \([\mathbf{x}_1\;\mathbf{x}_2]\), which corresponds to passing the coordinates of two points in the reference triangle. Then this method will return a 3x4
matrix:
\[ \begin{pmatrix} \grad^T\hat{b}^1(\mathbf{x}_1) & \grad^T\hat{b}^1(\mathbf{x}_2) \\ \grad^T\hat{b}^2(\mathbf{x}_1) & \grad^T\hat{b}^2(\mathbf{x}_2) \\ \grad^T\hat{b}^3(\mathbf{x}_1) & \grad^T\hat{b}^3(\mathbf{x}_2) \end{pmatrix} \]
Implements lf::fe::ScalarReferenceFiniteElement< std::complex< SCALAR > >.
Definition at line 44 of file complex_fe_space.h.
References lf::fe::test_utils::ComplexScalarReferenceFiniteElement< SCALAR >::inner_.
|
inlineoverride |
Definition at line 57 of file complex_fe_space.h.
References lf::fe::test_utils::ComplexScalarReferenceFiniteElement< SCALAR >::inner_.
|
inlineoverridevirtual |
Tell the number of evaluation (interpolation) nodes.
Implements lf::fe::ScalarReferenceFiniteElement< std::complex< SCALAR > >.
Definition at line 52 of file complex_fe_space.h.
References lf::fe::test_utils::ComplexScalarReferenceFiniteElement< SCALAR >::inner_.
|
inlineoverridevirtual |
The number of interior reference shape functions for every sub-entity.
codim | do-dimension of the subentity |
subidx | local index of the sub-entity |
Implements lf::fe::ScalarReferenceFiniteElement< std::complex< SCALAR > >.
Definition at line 32 of file complex_fe_space.h.
References lf::fe::test_utils::ComplexScalarReferenceFiniteElement< SCALAR >::inner_.
|
inlineoverridevirtual |
The number of interior reference shape functions for sub-entities of a particular co-dimension.
codim | co-dimension of the subentity |
Reimplemented from lf::fe::ScalarReferenceFiniteElement< std::complex< SCALAR > >.
Definition at line 63 of file complex_fe_space.h.
References lf::fe::test_utils::ComplexScalarReferenceFiniteElement< SCALAR >::inner_.
|
inlineoverridevirtual |
Tells the type of reference cell underlying the parametric finite element.
Implements lf::fe::ScalarReferenceFiniteElement< std::complex< SCALAR > >.
Definition at line 30 of file complex_fe_space.h.
References lf::fe::test_utils::ComplexScalarReferenceFiniteElement< SCALAR >::inner_, and lf::base::RefEl::RefEl().
|
private |
Definition at line 68 of file complex_fe_space.h.
Referenced by lf::fe::test_utils::ComplexScalarReferenceFiniteElement< SCALAR >::Degree(), lf::fe::test_utils::ComplexScalarReferenceFiniteElement< SCALAR >::EvalReferenceShapeFunctions(), lf::fe::test_utils::ComplexScalarReferenceFiniteElement< SCALAR >::EvaluationNodes(), lf::fe::test_utils::ComplexScalarReferenceFiniteElement< SCALAR >::GradientsReferenceShapeFunctions(), lf::fe::test_utils::ComplexScalarReferenceFiniteElement< SCALAR >::NodalValuesToDofs(), lf::fe::test_utils::ComplexScalarReferenceFiniteElement< SCALAR >::NumEvaluationNodes(), lf::fe::test_utils::ComplexScalarReferenceFiniteElement< SCALAR >::NumRefShapeFunctions(), lf::fe::test_utils::ComplexScalarReferenceFiniteElement< SCALAR >::NumRefShapeFunctions(), and lf::fe::test_utils::ComplexScalarReferenceFiniteElement< SCALAR >::RefEl().